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Abstract 
An accurate and reliable measurement is important in exercise science. The measurement tends to be less reliable when 
subjects are not professional athletes or are unfamiliar with a given task. These subjects need familiarization trials, but 
determination of the number of familiarization trials is challenging because it may be individual-specific and task-specific. 
Some participants may be eliminated because their results deviate from arbitrary ad hoc rules. We treat these challenges 
as a statistical problem, and we propose model-averaging to measure a subject’s familiarized performance without fixing 
the number of familiarization trials in advance. The method of model-averaging accounts for the uncertainty associated 
with the number of familiarization trials that a subject needs. Simulations show that model-averaging is useful when the 
familiarization phase is long or when the familiarization occurs at a fast rate relative to the amount of noise in the data. 
An applet is provided on the internet with a very brief User’s Guide included in the appendix to this article. 
Keywords: Familiarization; reliability; accuracy; model-averaging; Akaike Information Criterion 

INTRODUCTION 

An accurate and reliable measurement is 
important in exercise science and related areas. It 
is especially challenging with human subjects. 
When compared to athletes, non-athletes tend to 
produce less accurate and reliable outcomes 
because they are not familiar with a given task. 
Most volunteers who participate in studies are not 
professional athletes, and these volunteers need 
practice trials in order to become familiar with the 
task at hand (Hopkins, 2000). A meta-analysis 
emphasized the importance of familiarization trials 
(Hopkins, Schabord & Hawley, 2001). Without a 
familiarization period, the researchers found that 
adolescent subjects produced more variable 
measures of lower-limb electromyograph than 
adult subjects, indicating that larger sample sizes 
should be required for adolescents (Waldron, 
Highton & Gray, 2016). Moreover, when 
researchers studied children to determine the 
number of familiarization trials in various fitness 
tests, the results seemed dependent on the 
particular test performed (Vrbik et al., 2016).  
The necessary number of familiarization trials may 
be specific to both the individual and the assigned 
task. The expertise and experience of the 
researcher(s) may also play an important role 
because they often study new topics, some in 
which they may have more or less experience. 
Furthermore, not all researchers conduct 
experiments in the same population or under the 
same conditions. Therefore, researchers have 
relied on arbitrary decisions within a more or less 

agreeable scope. For instance, subjects repeated 
trials until they achieved consecutive measures 
within an acceptable range, but the choice of the 
acceptable range varied between studies 
(Beckham et al., 2019; Stockbrugger & Haennel, 
2003). Moreover, in small-sample studies, 
researchers would not want to lose any portion of 
a small sample simply because the study 
participants failed to meet arbitrary criteria.  
Different methods and rules have been applied to 
address the issue of familiarization, but there has 
always been a common goal: the accurate and 
precise quantification of the ability (the true 
unknown state) of a human subject whose 
performance tends to improve during the first few 
trials. In this article, for concise notation, we 
denote τ for the number of trials needed for 
familiarization and µ for the true ability (measured 
by a given task) once the familiarization has 
occurred. For instance, τ = 1 implies a subject is 
already familiar with a given task, and τ = 3 
implies that a subject is familiarized at the third 
trial. The notations, µ and τ, are graphically 
depicted in Figure 1. In this article, we assume: 

 (1) The number of familiarization trials is 
specific to the subject of the experiment,; 

 (2) A subject is already familiar or needs 
at least one trial until he or she becomes familiar 
with the routine (τ ≥ 1); 

 (3) A subject tends to underperform 
before the familiarization occurs and improves 
linearly (as an approximation) as he or she gets 
closer to their true ability; 

Kim & Essert. A STATISTICAL APPROACH FOR RELIABLE MEASUREMENT WITH FAMILIARIZATION TRIALS... Sport SPA Vol. 18 Issue 2: 5-11

5 

www.sportspa.ftos.untz.ba

DOI 10.51558/1840-4561.2021.18.2.5



 
 

 (4) A subject is asked to perform a 
sufficient number of trials (denoted by m) so that 
familiarization occurs before m trials (τ < m); and 

 (5) m is not too large to cause fatigue or 
any other factor which negatively affects the 
measurement once the familiarization has 
occurred. 
Figure 1 represents a subject of τ = 3 who 
required three trials in order to reach their true 
ability µ. In practice, researchers observe data 
points without knowing µ and τ as shown in the 
right panel of the figure, so τ and µ are to be 
estimated based on observed data. In this article, 
we use a statistical approach to the practical 
challenge of familiarization, and we demonstrate 

a method of model-averaging which does not 
require researchers to determine τ before the 
experiment is performed. It also determines µ by a 
data-driven weighted average. Section 2 explains 
the method of model-averaging applied to the 
familiarization problem. Section 3 provides a 
numerical example, and Section 4 demonstrates 
the operating characteristics of model-averaging 
via simulations under various scenarios. For 
practitioners, a free applet is provided at 
https://cessert.shinyapps.io/familiarization/ to 
apply the method of model-averaging (the 
applet's User's Guide is furnished in the appendix 
of this article).  

 
Figure 1: τ denotes the true number of trials needed for familiarization, and µ denotes a subject's true ability 
after familiarization (left). Researchers observe data in order to estimate unknown µ based on unknown τ 
(right). 
 
STATISTICAL METHODS 
 
We translate the aforementioned assumptions to 
a statistical model as follows. For m observed 
measures (y1, …, ym) we assume that data are 
generated by a normal model yt ~ N(µt, σ) where 
µt  = β0 + β1 t for t < τ (the expected measure µt 
changes linearly with respect to the number of 
trials, t, before familiarization occurs) and µt = µ 
for t ≥ τ (the true ability µ is maintained once the 
familiarization occurs). This statistical model is 
graphically shown in Figure 1. The model intercept 
β0, slope β1 (the rate of change in the expected 
measure until familiarization occurs), and σ (the 
standard deviation of the unexplained error 
around the expectation) are to be estimated given 
the data (y1, …, ym). It is a special case of the two-
line model (also known as “changepoint 
regression”) when the location of change τ is 
known (Julious, 2001). In our context, τ is 
unknown, but it can be estimated from the subset 

of natural numbers {1, 2, …, m – 1} which 
provides the best model fit according to the 
maximum likelihood estimation. We consider four 
statistical approaches: sample mean, maximum 
likelihood estimation (MLE), model-averaging with 
Akaike Information Criterion (AIC) (Akaike, 1974; 
Buckland, Burnham & Augustin, 1997; 
Wagenmakers & Farrell, 2004), and model-
averaging with Akaike Information Criterion with 
finite-sample Correction (AICC) (Burnham & 
Anderson, 2002; Sugiura, 1978). 
 
SAMPLE MEAN 
 
Among the four statistical methods considered in 
this article, estimating µ by the sample mean (i.e., 
the simple average of y1, …, ym) may be the 
simplest approach, and it is the best estimation for 
µ if a subject is already familiar with a given task 
(i.e., τ = 1). Note that if τ ≥ 2 and the expected 
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measure increases (i.e., β1 > 0), the sample mean 
will underestimate the population mean µ. 
 
 
 
Maximum Likelihood Estimation (MLE) 
 
Under the normal model assumption, the four 
parameters (τ, β0, β1, σ) are to be estimated. The 
MLE chooses the values of (τ, β0, β1, σ) which 
maximizes the likelihood (a value which quantifies 
the model fit with the given data). In this article’s 
companion applet, all computations are 
performed in R (Version 4.0.2). 
 
Model Averaging by AIC Weights 
 
There are m – 1 possible choices for τ  = 1, 2, …, 
m – 1. Assuming τ = 2 is true, then the 
parameters (β0, β1, σ) can be estimated by the 
MLE, and we let L2 be the maximized likelihood 
when τ = 2. Similarly, we can obtain the 
maximized likelihoods L3, L4, …, Lm–1 when 
assuming τ = 3, 4, …, m – 1, respectively. The 
Akaike Information Criterion (AIC) is defined as 
AICτ = –2 ∙ ln(Lτ) + 2v, where v is the number of 
parameters to be estimated (in this case, v is 
always 3 for our three parameters). For each 
assumption, we can evaluate AICτ for τ = 1, 2, …, 
m – 1. The AIC-weight is defined for each specific 
assumption of familiarization occurring at trial τ as 

𝑤𝜏 =
exp(−0.5 ∙ AIC𝜏)

exp(−0.5 ∙ AIC1) + … + exp(−0.5 ∙ AIC𝑚−1)
  . 

Note that the above definition of AIC-weight is 
simplified from the original definition given in 
Wagenmakers & Farrell (2004) and others, yet it is 
equivalent to the original definition. The AIC-
weight wτ is between zero and one, and it 
approximates the probability that the assumed 
value of τ is true after observing data (y1, …, ym). 
The estimation for µ depends on the assumption τ  
= 1, 2, …, m – 1. After obtaining τ-specific 
estimates for µ, denoted by �̂�1, �̂�2, …, �̂�𝑚−1, the 
subject's true ability is estimated by the weighted 
average 

�̂� = 𝑤1�̂�1 + 𝑤2�̂�2 + ⋯ + 𝑤𝑚−1�̂�𝑚−1 . 
 
Model Averaging by AICC Weights 
 
The interpretation of the AIC-weight becomes 
more accurate as the number of trials per subject 
increases. For a small number of trials, a corrected 

AIC (AICC) is recommended (Burnham & 
Anderson, 2002; Wagenmakers & Farrell, 2004). 
The AICC is defined as 

AICC𝜏 = AIC𝜏 +
2𝑣(𝑣+1)

𝑚−𝑣−1
 , 

where m is the maximum number of trials and v is 
the number of parameters to be estimated (in this 
case, v is 3 for our three parameters β0, β1 and σ). 
The definition of AICC-weight is similar to the 
AIC-weight given in Section 2.3 (replacing AICτ by 
AICCτ), and the remaining procedure of 
estimating µ is the same as described in Section 
2.3. 
 
 
NUMERICAL EXAMPLE 
 
As an example, suppose five measurements were 
observed (1.25, 3.03, 2.37, 3.02, 3.43) from a 
study participant. The sample mean is 2.62, which 
also happens to be the final estimate for µ under 
the assumption of τ = 1 (i.e., the subject did not 
require any familiarization trials at all; in other 
words, we assume that the subject was already 
familiar with the task at hand from the get-go at 
the very first trial). However, if we assume the 
familiarization happened at τ = 2, 3, or 4, the 
respective estimates for µ are 2.96, 3.06, or 3.24 
as shown by the dotted lines in their respective 
plots in Figure 2. According to the method of MLE, 
µ is estimated as 2.96 because its likelihood value 
is the highest as shown in the Likelihood column 
of Table 1. According to the AIC method, µ is 
estimated by the weighted average 

2.6200(0.0335) + 2.9625(0.7103) + 
3.0569(0.1079) + 3.2447(0.1483) = 3.0031. 

In this estimation, the assumption τ = 2 was most 
likely (w2 = 0.7103 by AIC-weight), and the 
assumption τ = 1 was least likely (w1 = 0.0335 by 
AIC-weight). Using the different method of 
model-averaging, the method of AICC estimates µ 
by 

2.6200(0.9965) + 2.9625(0.0026) + 
3.0569(0.0004) + 3.2447(0.0005) = 2.6214. 

 
The AICC penalizes an additional parameter (due 
to the familiarization period) substantially more 
than the AIC, particularly when the sample size is 
small. The estimate is very close to the sample 
mean of 2.62 because the simplest assumption 
that no familiarization is needed is weighted so 
much (w1 = 0.9965 by AICC-weight).
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Table 1: Parameter estimates and model weights for each assumption τ = 1, 2, 3, 4. 

 
Assumption 

Parameter Estimates Likelihood and Model Weights 

β0 β1 µ σ Likelihood AIC-weight AICC-weight 

τ = 1 NA NA 2.6200 0.7647 0.0032 0.0335 0.9965 

τ = 2 -0.4625 1.7125 2.9625 0.3398 0.1830 0.7103 0.0026 

τ = 3 0.8725 0.7281 3.0569 0.4954 0.0278 0.1079 0.0004 

τ = 4 1.1624 0.5206 3.2447 0.4649 0.0382 0.1483 0.0005 

 

 
Figure 2: Estimates with respect to trial for each assumption τ = 1, 2, 3, 4 (from left to right). 
 
 
 
SIMULATIONS 
 
It is impossible to determine which method of 
estimation is preferable based on a single numeric 
example. That one method outperforms another 
depends on its parameters (particularly τ, β1, and σ) 
and the maximum number of trials m. In this 
section, we compare the above four methods of 
sample mean, MLE, AIC weights, and AICC 
weights via simulations. 
 
Simulation Designs 
 
The four methods were compared by simulations 
using various scenarios: β0 = 2.5; β1 = 0.25, 0.5, 
0.75, 1; σ = 0.5, 0.25, 0.1; and m = 5, 6, 7, 8, 9, 
10. Note that changing the value of β0 would not 
affect the relative performance of the four 
methods because it only determines the height of 
the two-line model graphically shown in Figure 1. 
The relative performances are rather sensitive to β1, 
σ, and m because it is easier to detect τ (the true 
number of familiarization trials needed) as β1 
increases (clear trend of systematic changes in 
observed measures) and σ decreases (less 
variability of measures around the expected 
measure with respect to trials). Of course, the 
amount of statistical information increases as m 
increases. For each m = 5, 6, …, 10, we set the 

true values of τ = 2, 3, …, m – 1. Note that the 
case of τ = 1 is not worth demonstrating via 
simulations because the sample mean is the best 
method of estimating µ when a subject does not 
need any familiarization trials (i.e., a two-line 
model would be over-fitting in this case). In the 
simulation studies, the performance of each 
method is measured by the square-root of the 
mean squared error (RMSE), which is the average 
squared distance of estimates from the true value 
of µ per simulation scenario. 
 
Simulation Results 
 
In summary, (1) the AIC-weight or AICC-weight is 
the best method (smallest RMSE) in most scenarios, 
(2) the MLE method is occasionally the best when 
the familiarization trend is very clear (i.e., a large 
value of β1, a small value of σ, and/or a large value 
of τ), and (3) the simple average (mean) is the best 
when the familiarization trend is not clear (i.e., a 
small value of β1, a large value of σ, and/or a small 
value of τ). The simulation results demonstrate the 
patterns which, upon reflection, make sense when 
determining whether researchers can benefit from 
the AIC-weight or AICC-weight. 
To focus on the cases when the simple average 
(mean) outperforms the other methods (MLE, AIC-
weight, and AICC-weight), Figure 3 presents the 
scenarios of 
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(β1 = 0.25, σ = 0.5, m = 7),  
(β1 = 0.25, σ = 0.5, m = 10),  
(β1 = 0.25, σ = 0.25, m = 7), 
(β1 = 0.25, σ = 0.25, m = 10), 
(β1 = 0.5, σ = 0.5, m = 7), and 
(β1 = 0.5, σ = 0.5, m = 10). 

If we are to choose between the simple average 
and a model-averaging method in the absence of 
knowing the true τ and µ, the benefit of using 
model-averaging seems relatively high when 
compared using the simple average.

  
 

 
Figure 3: Graphic presentation of the simulation results 
 
 
DISCUSSION 
 
In many practical situations, from a statistical 
perspective, the purpose of familiarization trials is 
to accurately measure a subject's ability or 
performance, and the purpose of repeated trials is 
to precisely measure his or her ability by reducing 
the variance or variability. In the literature, we 
have seen some effort to pre-specify τ (the 
number of familiarization trials applied to all 
subjects) in order to estimate µ, a subject's true 
ability. In this article, we demonstrate methods of 
estimating µ without pre-specification of τ. The 
MLE method is a single-model (best fit) approach, 
and the model-averaging method is a multiple-
model approach. In the scope of our simulation 
scenarios, it appears that the model-averaging 
method of using AIC-weight seems reasonable for 
practical use. The AIC-weight performs worse than 

the simple average (in terms of mean squared 
error) under any of the following circumstances: 

(1) when researchers let subjects repeat trials 
a large number of times (i.e., a large m), 
or 

(2) when only one or two familiarization trials 
are needed (i.e., small τ), or 

(3) when unfamiliarized trials and familiarized 
trials are not clearly distinguishable (i.e., 
small β1 and large σ). 

Model-averaging methods have been popular in 
various disciplines. For instance, they have been 
proposed to determine the maximum tolerable 
dose in early-phase clinical trials (Yin & Yuan, 
2009); to recommend an acceptable benchmark-
dose of a toxic agent for public health (Bailer, 
Noble & Wheeler, 2005; Shao & Small, 2011; Kim, 
Bartell & Gillen, 2015); to model wind-speed 
distributions (Gong & Shi, 2010); and in 
economics and psychological sciences (Steel, 2020; 
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Hinne et al., 2020), to name a few. It is a popular 
statistical strategy used to achieve reliable 
estimation when researchers cannot determine 
with certainty one single model or whenever 
model uncertainty occurs. Hopefully, in the future 
it will also be applied in a wide range of areas in 
kinesiology and exercise science. 

In conclusion, in the absence of 
knowledge of task-specific τ and/or individual-
specific τ, we recommend the model-averaging 
method for researchers as it only requires a 
reasonable maximum number of trials without 
determination of the number of familiarization 
trials or any other arbitrary rules. For convenience, 
a free applet is provided at 
https://cessert.shinyapps.io/familiarization/. It 
allows the user to enter or to “copy and paste” 
any number of observations that were recorded 
and then returns estimates for µ and τ with 

graphical presentation. See the following 
Appendix for instructions or clarification if needed. 

 
Appendix: User's Guide 
 
In a web browser, enter 
“cessert.shinyapps.io/Familiarization.” The screen 
will appear as shown at the top of Figure 4. Data 
can be separated by commas (e.g., 1.25, 3.03, 
2.37, 3.02, 3.43) or separated by spaces (e.g., 
1.25 3.03 2.37 3.02 3.43) as shown in Figure 4. 
Press the Enter key or click on the “Familiarize” 
button to process the data. It will produce results 
with graphics. If there are a large number of data 
points, depending on the screen size, it may be 
necessary to press the Page Down key to see the 
full table of results on the bottom of the screen. 
To clear results and reset the data field, press the 
function F5 key on the top row of your keyboard. 
It will allow the next set of data to be entered into 
the text box.  

 

 
Figure 4: Demonstration of the applet 
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